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Ahrtraet. We have s!udi~d !ha c~ i ! lc~!  crponcn! zssociE!cc! xith !hp gean squared 
end-to-end distance of self-avoiding walks on the two-dimensional X and checkerborard 
fractal families. By means of exact renormalization group transformations we have calcu- 
lated Y for the first four members of each family. 

In recent years many specific results have demonstrated that the critical behaviour of 
statistical model systems on fractals depends on underlying lattice structures. This is 
particularly true in the case of the self-avoiding walks (SAWS), where so far no exact 
formula that represents critical exponents in terms of fractal and spectral dimensions 
and other fractal properties has been found. However, there are many phenomenologi- 
cal proposals for such a formula, hut their validity has not been supported by exact 
results for  SAW^ on the Sierpinski gasket family of fractals [I, 21. For this reason, 
additional exact results on  different fractal families are desirable. In this paper we 
present values of the mean squared end-to-end distance critical exponent v for self- 
avoiding walks on plane X and checkerboard (CB) fractal families. 

Each member of the plane X and CB family is labelled by an odd integer b = 2k + 1 
( k  = 1,2, . . . , m) and can be obtained as the result of an infinite iterative process of 
successively enlarging the fractal structure b times and substituting the smallest parts 
of the enlarged structure with the generator (initial structure). The generator of a CB 
fractal is a square, of size b x b, composed of b rows of unit squares, so that within 
each row and each column every other one of them is removed, whereas in the case 
of X fractals instead of unit squares we put crosses composed of the diagonals of 
squares (see figure 1). The fractal dimension df for an arbitrary member specified by 
b, of each of the two famiilies, is equal to ln[(bz+ 1)/2]/In b [31, whereas the spectral 
dimension d, is known only for the few first members ofboth families [4]. For increasing 

to the ordinary square lattice, which is indicated by the fact that the fractal dimension 
dr tends to 2 when b + 00. (The b = m fractal generator is a r / 2  wedge of the square 
lattice, for both families.) 

The SAW model represents a random walk that must not contain self-intersections. 
Its mean squared end-to-end distance ( R L ) ,  for N steps, should behave according to 
the scaling relation 

h ,,, %,',.. L..VL ". ... " .I ...... .," "--"...- ...-.- -..- ... "... ths+ mnmhprr -f ehprp  twn fnmili-r hernme m n r ~  2nd mnrm cim;lslr 

(RL) -  N'" ( 1 )  
in the asymptotic region N + m. In our study of SAWS we apply the real-space renormali- 
zation group (RG) technique [SI to calculate the critical exponent v. To this end, let 
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Figure 1. The first two steps of construction of the b = 5 plane X fractal lattice. 

us consider any finite pan  of the CB, or X, fractal lattice that is the same as the structure 
obtained after the rth step of the iterative construction of the entire fractal, and let us 
call it the rth-order generator. Next, we introduce the three restricted partition functions 

F"'(x) =I F,x" G"'(x) =I G,x" H " ' ( x ) = L H , x "  (2) 

where X" is the weight of an n-step SAW, while F, is the number of all possible n-step 
SAWS that start at one corner and end at the nearest corner of an rth-order generator. 
Furthermore, G. in (2) is the number of n-step SAWS that start at one corner and end 
at the diagonally opposite corner of the rth-order generator, and H ,  is the number of 
n-step  SAW^ that consist of two non-intersecting SAW parts, such that each of them 
starts at one comer and ends at one of two nearest corners of the rth-order generator 
(see figure 2). For any b > 3 X fractal, the initial values of these functions that 

Figure 1. An illustration of the restricted partition functions used to describe SAWS on 
fractals. Here we focus our attention on the SAW from the vertex A to the vertex F which 
is a part of a longer S A W  somewhere within by b = 7 CB fractal. The SAW part from A to 
B is of the G type and is weighted by xZ6 within the restricted partition function G'"(x) 
(see equation (2)). Similarly, the BC part, together with the DE part, contributes a term 
with the weight x" in H 1 ' ) ( x ) ,  while the EF part of the SAW is weighted by xZ5 and makes 
a contribution IO the function F"' (s) .  
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correspond to a unit cross are given by 

H(O)= 0 (3) F i O '  = x 2  G(O)= x 2  

whereas for every particular cs-fractal one has to start with polynomials in x that 
correspond to the fractal generator (that is, not to a unit square) and whose order and 
coefficients depend on b t  (see appendix 1). Since the fractals are self-similar structures, 
recursion relations that connect the ( r  + 1)th and rth-order restricted partition functions 
(.IF I I I U C p F I I Y G ' l l  "1 r ,  dLIU ,I bdll uc YCllLlCO Ulnl (,VI &L-,,t-Ldl U, urcy ','a"= L11S rulrurrrrrg 

form 

~ - -  :"A~......A~-* ^ E "  ..-A :. ..-..L.. :c-2 .I.̂. ,C^_ -.---- I I., .L^_.L^..^.L^ &-^I, -... :.." 

F"+" = Ab(i, j ,  k)F""G""H"'* 
u k  

One should observe that the polynomials given in (4) are valid for both the X and CB 

fractal, with the same b, and can be obtained by summing all possible self-avoiding 
paths on the CB fractal generator. The latter paths consist of the edges and diagonals 
~f the unit  square, with the restric!ion !hat, within a squarel two neighhoering edses 
cannot be traversed subsequently. One illustrating example is given in figure 3. 

For b = 3 and b = 5 we have determined coefficients that appear in relations (4) by 
a straightforward calculation, whereas for b = 7 and b = 9 the work had to be computer- 
ized. The direct enumeration of all relevant paths for b > 11 is infeasible using a PC 
with the Intel 80486 processor, and hardly possible using a mainframe comparable 
with the IBM 3090. In appendix 2 we present coefficients A, B and C For b = 3, 5 ,  7 
(and the CPU time required to obtain them), but we do not give our data for b = 9  as 

Figure 3. An example of the SAW path that contributes to the second recursion relation 
(4), in the case of the b = 9 fractal. The corresponding weight of the path is F("c'G1'J''H(rl', 
whereas the total number of paths with the same weight is 8,(16,11,3) =245 556. In this 
picture, each white square represents an rth-order generator. 

__ 
t Only never-starting and never-ending SAWS are treated in the RG approach applied in this paper. I t  is 
easy to see that on the b = 3 fractal (X or CB) infinite SAWS can he performed only by making C-type walks, 
that is, the F and H partition functions are not relevant, so that we may put F"'(x)=H"'(x)=O and 
proceed further. 
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the corresponding presentation would require ten printed journal pages (the data are 
available upon request addressed to the authors). 

Partition functions F, G and H are the RG parameters and relations (4) represent 
the corresponding exact RG transformations. A fixed point ( F * ,  G*, H * )  of these 
transformations can be found by numerically solving the nonlinear system of equations 

S ElerouiC-HudiiE and S MiloSeuif 

F * =  1 A h ( i , j , k ) ( F * ) ; ( G * Y ( H * ) '  
c.;,k 

Gf= 1 B, ( i , j , k ) (F*) ' (G*) ' (H*) '  ( 5 )  
L1.k 

H* = C C,( i, j ,  k ) (  F*)'( G*Y( If*)' 
4;.k 

For each fractal studied here, specified by a particular b, there is more than one 
nuii-uiviai I ~ C U  point. H I ~ U I I ~ C ~ S ~ L  rruuy U, m e  iiuw 111 trie ( r ,  U, " 1  space snuwcu 
which one of the fixed points is relevant to the determination of the asymptotic 
behaviour of  SAW^ on a fractal. It turns out that the linearized RG transformations, at 
the relevant fixed point, have only one eigenvalue A(b)  larger than 1, so that one can 
straightforwardly determine the critical exponent v according [5] to the formula 

_._..I..:., =..-A -. :... 1 :^^, .A..>.. .PAL. a .... :_ .L. / r  P r r /  .L J 

u(b)=ln b/lnA(b). ( 6 )  

Specific results for the fixed points and the relevant eigenvalues for the fractals under 
study are given in appendix B. The pertinent critical exponent U values are I ,  0.852 35, 
0.815 02 and 0.79578. for b equal to 3, 5, 7 and 9, respectively. 

The results obtained, plotted versus the variable I j b ,  are depicted in figure 4. One 
can see that Y monotonically decreases with increasing b, and, as in the case of the 
Sierpinski gasket ( S G )  family of fractals [I], one could expect that Y continues to 

08 
M 01 (L? a3 

I/b 
Figure 4. The exact results (0) for the critical exponent Y as a function of l l b .  where b 
enumerates members of the fractal families under study. The full curve that connects the 
presented results serves merely as a guide to the eye. The solid circle (0) represents the 
value U=: found for the Euclidean lattices [61. 
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approach monotonically the Euclidean value Y = a [6], when b + CO. However, in view 
of the conclusions obtained by the finite-size scaling arguments [7], and supported by 
the Monte Carlo RG results [2], one should he cautious in advocating such an 
expectation. Indeed, it has been shown [2,7], in the case of the SG fractals, that v can 
cross the Euclidean value for some finite b, that is, before the crossover region at 
b + m. Accepting appropriate finite-size scaling assumptions, we can analyse our results, 
in the way Dhar [7] did for the SG fractals, so as to reach a conclusion that is similar 
to the one reached io the SG case. Unfortunately, the set of existing numerical data 
cannot yet offer necessary support to the prerequisite scaling assumptions. Therefore, 
we can conclude that the study of SAW$ on the X and CB fractals brings about the 
same questions posed in the case of the SG fractals and, hence, the problem under 
study, although more complex, merits further investigation. 
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Appendix 1 

Here we present the initial values (i.e. initial polynomials in x)  for the restricted 
partition functions. In the case h = 3: the only relevant parameter G has the initial 
values G"' = x2 and G'O'= 2x2 for the X and CB fractals, respectively. The respective 
critical values of x, at which G"'(x) starts to  diverge, are x*=  1 and x = G .  

In the case of X fractals, with b > 3, there are unique initial values given by (3), 
whereas for CB fractals, with b > 3, accepting F"', G"' and HIo' as initial values could 
imply self-intersections for walks described by the higher-order restricted partition 
functions. For this reason, for b = 5 ,  as the initial conditions we take the first-order 
restricted partition functions 

F'"(x) = 4x7+28x9+72x" +216x1' + 5 2 0 ~ ' ~ + 8 2 0 x ~ '  +876xI9+644x2' +312x" 

+ 8 4 ~ ~ ~ + 8 x ~ '  

G"'(x) = 80x"+ 2 . 0 8 ~ ' ~  + 4 0 0 ~ ' ~  + 5 9 2 ~ ' ~  + 7 8 4 ~ "  + 752x20 + 4 6 4 ~ ~ ~  + 176x2'+ 3 2 ~ ~ ~  

H"'(x)  = 16x"+224x'*+l 360x1*+2 176xz0+2 512xZ2+2 112x2'+ 1 3 6 0 ~ " + 6 0 8 x ~ ~  

+ 128x30 

while for b = 7 we take 

F"'(x) =4x9+68x1'+4O0x1'+ 1 6 5 6 ~ ~ ~ + 6 4 9 6 ~ " + 2 5  5 0 0 ~ ' ~ + 9 7  268x2'+328 924x2' 

+ 9 5 0 4 4 8 ~ ~ ~ + 2 3 6 0 9 6 4 ~ ~ ' + 5  0 7 6 7 8 0 ~ ~ ~ + 9 4 1 8  916x3'+ 1 4 9 4 7 8 3 6 ~ ~ '  

+20 107 1 0 0 ~ ~ ~ + 2 2 7 2 5 9 1 2 ~ ~ ~ + 2 1  383 764x"+ 16 5 7 4 2 1 6 ~ ~ '  

+ 10 443 260x4' + 5 249 6 9 6 ~ ~ ~  + 2 043 2 6 4 ~ ~ '  + 585 7 4 4 ~ ~ ~ +  113 404x" 

+ 12 5 2 8 ~ ~ ' + 5 0 8 x ~ ~  
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G"'(x) = 1 0 0 8 ~ ' ~ + 5  7 9 2 ~ ' ~ + 2 2  336x'*+70 848x2"+201 7 4 4 ~ ~ ~ + 5 3 5  5 8 4 ~ ~ ~  

S Elezouid-Had% and S MiloSeuiC 

+ I  3 4 0 8 9 6 ~ * ~ + 3  1 2 4 9 9 2 ~ ~ ~ + 6  567472~ '~+11954464x '~  

+ 18 265 3 7 6 ~ ' ~ + 2 3  068 O96xl6+23 967 120x'*+20435 4 7 2 ~ ~ '  

+14213 8 0 8 ~ " ~ + 7 9 6 1  7 6 0 ~ ~ ~ + 3 5 1 0 8 9 6 x ~ ~ + 1  173712~ '~+279248x~ '  

+42 0 8 0 ~ , ~ + 3  0 2 4 ~ ~ '  

H " ' ( x )  = 1 6 ~ ~ ~ + 5 4 4 x ~ ' + 7  824xZ2+67 6 4 8 ~ ~ ~ + 4 3 7  l 8 4 . ~ ~ ~ +  1 810 7 8 4 ~ ~ ~  

+ 5  478 624x''+ 13 110 432x"+26 0 0 0 2 8 8 ~ ' ~ + 4 3  668 5 4 4 ~ ' ~  

+62 417 552x3'+75 790 592x4'+77 226 336x4=+65 469 3 7 6 ~ ~ ~  

+45 795 7 2 8 ~ ~ ~ + 2 6  185 984xd8+ 12 058 816xs"+4 353 408xs2 

+ I  1 6 9 9 3 6 ~ ~ ~ + 2 0 9 6 9 6 ~ ~ ~ + 1 8  8 0 0 ~ ' ~ .  

The corresponding critical values of x* are x&(b = 5)  = 0.5648, x&(b = 7) = 0.5102, 
x z ( b  = 5 )  = 0.8359 and x: (b  = 7) = 0.7715. Here we would like to point aut that, roughly 
speaking, determination of F"', G"' and H"' using a PC with the Intel 80486 processor 
required a few minutes for the b = 5 CB fractal, and a few hours for the b = 7 CB fractal, 
so that the b = 9 case was not accessible. Fortunately, our analysis of the RG equations 
(4) for b = 3, 5 ,  and 7 confirms that X and CB fractals have the same fixed points. 
Hence, for the b = 9 CB fractal we have accepted the fixed point values found for the 
b = 9 X fractal (see appendix 2), which was determined in accord with the corresponding 
critical value x:( b = 9) = 0.7355. 

Appendix 2 

In this appendix we present coefficients Ab(i, j, k), Bb(i, j ,  k) and Cb(i, j, k) of the RG 

transformations (4) for b, 3, 5, and 7. 

b = 3 :  

A3( i , j ,k )=0  B,(O, 3,O) = 1 C3(i, j, k) = 0 

b = 5 :  

A,(1,4,0)=1 A,(3, 2 , O )  = 1 A,(3, 4,O) = 2 

A,(3,4, 1) = 1 A,(5,2, I) = 2  A,(5, 2,3) = 3 

A,(5,4,0) = 3 A,(5,4,1) = 2 A5(5,4, 2) = 2 

A,(7,2,0) = 1 B,(O, 5 , O )  = 1 8,(4,3,0) = 6 

Bs(4,3,2)=4 8,(4,5,2) = 2 B,(6, 3,O) = 2 

B,(6,3, I )  = 4 C,(O, 8, I )  = 1 C,(4,4,5) = 8 

C5(4, 6,O) = 2 C5(4, 6 , l )  = 4 C5(6,4, 0) = 1 

C,(6, 4,2) = 6 
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b = 7 :  
A7(1,6,0)=1 A7(3,4,0) = 3  

(A7(3, 6, i ) )  = {4, 1) 
(A7(3,8, i ) }  = (2,2} 

A,(5,2,0) = 1 
(A7(5,4, ;))=(8,6,4,3} 
(A7(5, 6, i ) )  = (12, 16,4, 12) 
{A7(5,8, i)}=(l4,  13, lO,9) 
(A7(5,10, i)}=(2,41 
(A,(7,2,2;+1)}={3,6,8} 
{A7(7,4,i)}=(17,18,26,20,16,14, 11) 
(A7(7, 6, i ) )  = (44,57,50,49,36,30,22)) 
{A7(7, 8, i ) )  ={28,44,50,36, 19, 16) 
IA7(7, 10, i)) = {6,41 
(A7(9, 2,2i)) ={3,8, 12,46,58,95} 
{A7(9, 4, i ) )  = {34,42,66,63,80,74,94,42,58, 132) 
{A7(9, 6, i ) )  = { S 5 ,  124,154,146,126,134,33,36,32) 
{A7(9, 8, i)) = {2S, 62,76,67, 54, 16) 

{A7(11, 2 ,2i+ 1 ) )  = (7,30,40,68} 
(A7(II,4,  i))={58,72, 136, 126, 182, 138, 177,74,45} 
{A7(lI ,6,  i))=(84, 145,200, 164, 142,61,26} 
(A7(l l ,8 ,  i ) )=(8,24,27,6)  
{A7(13, 2,2i)} = (5,15,36,32} 
(A7(13, 4, i)} = {40, 102, 122, 164, 120, 122) 
(A7(13, 6, i ) }  = {42,90,88,62, 13) 
{A7(15,2, i))=(6,11) 
(A7(15, 4, i ) }  = (18,32,40, 12.7) 

{B7(4,5, i)}=120,8} 
(&(4,7, i))={6, 14) 

A7(9, 10, 1) = 2 

B7(0, 7,O) = 1 

B7(4,9,2)=12,B,(4,11,2)=4 
(B,(6,5, i ) ]  = (36,36, 16) 
{B7(6, 7, i ) )  = {20,32,24,24) 

(B7(8, 3 ,2i))  = (30,48,72,48,72) 
{B,(8,5,i))={5484,90,60,108,32,120,96,72} 
{8,(8,7,i))=(36,112,108,76,44,32,32,0,36) 

(B7(10,3,i)}={20,64,24,104,20,144,0,72) 
(B,(lO, 5 ,  i)) = {60, 144, 146,212, 198, 188, 172,216} 
{B7(10,7, i)}={40, 160, 172, 144,52,52) 
{B,(10,9, i)1={8,12,4} 
(B,(l2,3, i ) ]  = {S, 44,72,60, 112,68, loo} 
(B,(12,5, i)}={48, 140, 184,208,244, 120,76} 
(B,(12,7, i))=(24,76,76, 12) 
(B,(14,3,i))={4,20,36,64,16,24) 
(B,(14,5,i)}={34,76,82,72,10) 
(B7(16, 3, i)) = (6, 14, 16) 

IB7(6,9, i))=12,12,32} 

(8,(8,9, i)} = IS, 36,44,0,4} 
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i = O ,  1 
1=0,1 

i = o ,  . . . , 3  

i = o , .  . . , 2  
i = o , .  . . , 2  

i = o , . .  . , 5  

i = o , .  . . , 5  
i = o , .  . . , 9  
i =0, . . . , 8  
i =0, . . . , 5  

i = o , .  . . 3  
i =0, . . . , 8  
i = O , . .  . , 6  

i=O,  . . .  3 
i = O , .  . . , 5  
i =o, . . . , 4  
1=1,3 
i = o ,  . . . , 4  

1=1,2 

i = O , .  . . , 6  

1=1,2 

1=0,2 

i=O,1,3 
i =o, . . . , 3  
1=1,2 
i = o , .  . , , 4  

i =0, . . . , 8  
i = O ,  . . . , 4  

i = o , . .  . , 7  
i =0, . . . , 5  
i = 0,1,2, 

i = O , .  . . , 6  
i =0, . . . , 3  
i =o, . . . , 5  
i = o , .  . , , 4  
i = o , 1 , 2  
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C7(0, 12, 1) = 1 

S ElezoviC-Had% and S MiloSeviC 

C,(4,8,5) = 8 
i = o , . .  . , 5  

ICA4.12, i)} = {4, 161 i = l , 5  
{C,(6,8,2i)) = {11,30,64,40) i =0, . . . , 3  
{C,(6, 10, i)}={16,28,40,64,32) i =0, . . . , 5  

C,(8,4,13) = 576 
{C,(8,6, i)} = {6,0,0,0,0,32,0, 160,0,200} i=O,.  . . , 9  
(Cd8.8, i)} = 156, 144, 132,228, 156, 158,96,72} i = 0,. . . , 7  
{C7(8, 10, i)} = {14,32,70,72,128,64) i=O, .  . . , 5  

{C,(l0,4,i))={l,150,760} i = 0,8, 10 
{C,(lO,6,i))={16,30,68,58,212,92,312,206,264} i=O, . _ .  , 8  
{C,(10,8, i)}={66,188,267,344,274,144,96} i=O, .  . . , 6  
{ C,( 10, 10, i)} = {4,20,40, 10) i =0, . . . , 4  
{C7(12,4,2i+l)}={6,24, 168,456, 190) i = O , .  . . , 4  
{C,(12,6, i))={52,116,158,272,252,340,72,72} i=O, ,  . . , 7  
{C,(12,8,i))={28,82,100,134,64,8) i = O , .  . . , 5  
{C,(14,4,2i)) = {6,58, 152, 135) i =0, . . . , 3  
{C7(14,6, i)}={24,62, 116, 80,64,22} i=O, .  . . , 5  
1C7(16,4, i)}={6, 14) i = 1 , 3  

Calculation of these coefficients required a few seconds and a few minutes for the 
b = 5 and b = 7 fractals, respectively, using a PC with the Intel 80486 processor. We 
have also performed similar calculations in the b = 9 fractal case, which took a few 
hours using the same computer. However, presentation of the corresponding data 
would take ten journal pages and we do not give it here. 

Using the known coefficients in the fixed point equations ( 5 )  and solving them 
numerically we have learnt that the relevant fixed points (F*,  G*, H') are (-, 1, -1, 
(0.66371,0.72464,0.10003), (0.56805,0.62296,0.05849), and (0.51576,0.571 23, 
0.038 69), for b = 3, 5 ,  7, and 9, respectively. The respective eigenvalues are 3, 6.607 7, 
10.887 1, and 15.817 4. 

{C7(4, 10, i)} = {6,24,0, 8,0,32} 

C,(6, 12,l)  = 8 

C,(X, 12, 1) = 4 
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